THE GENERALIZATION OF SIERPINSKI CARPET AND MENGER SPONGE IN n-DIMENSIONAL SPACE
نویسندگان
چکیده
منابع مشابه
Analysis on the Sierpinski Carpet
The ‘analysis on fractals’ and ‘analysis on metric spaces’ communities have tended to work independently. Metric spaces such as the Sierpinski carpet fail to satisfy some of the properties which are generally assumed for metric spaces. This survey discusses analysis on the Sierpinski carpet, with particular emphasis on the properties of the heat kernel. 1. Background and history Percolation was...
متن کاملHomeomorphism Groups of Sierpiński Carpets and Erdős Space
Erdős space E is the ‘rational’ Hilbert space, that is the set of vectors in ` the coordinates of which are all rational. Erdős proved that E is one-dimensional and homeomorphic to its own square E × E, which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of E. Let M n , n ∈ N, be the n-dimensional Menger continuum in R, also known a...
متن کاملSierpinski Carpet Fractal Antenna for Multiband Applications
A Planar antenna with Microstrip feed Sierpinski carpet fractal geometry for multiband applications is presented. The multiband behavior is analyzed through two fractal iterations. Self similarity property of fractal technology is applied in the antenna design to reduce the physical size, increase bandwidth and gain. The proposed antenna covers multi bands such as 1.8/5.59/5.78/6.4/6.63/7.84 GH...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولSelf-assembly of the Discrete Sierpinski Carpet and Related Fractals
It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal’s triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree’s tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractals
سال: 2017
ISSN: 0218-348X,1793-6543
DOI: 10.1142/s0218348x17500402